Kinematics Spatial Mechanisms Pdf Converter
Kinematics Spatial Mechanisms Pdf. 3/20/2018 0 Comments Kinematic pairs in a spatial mechanism are viewed either as allowing relative screw motion between links or as constraining the motion of the two chains of the mechanism connected to the two elements of the pair. Using pair geometry constraints of the sphere-plane and sphere-groove. Kinematics and Load Formulation of Engine Crank Mechanism Hailemariam Nigus1a. These IC engines convert the chemical energy stored in their fuel into heat. The working of a four stroke engine is based on simple slider crank mechanism. The kinematics of IC engine is not altering from simple slider crank mechanism. The kinematics.
Kinematics Spatial Mechanisms Pdf Converter Free
Kinematics Spatial Mechanisms Pdf Converter Online
- W. R. Hamilton: On quaternions, or on a new system of imaginaries in algebra, Philos. Mag. 18, installments July 1844 - April 1850, ed. by D. E. Wilkins (2000)Google Scholar
- E.B. Wilson: Vector Analysis (Dover, New York 1960), based upon the lectures of J. W. Gibbs, (reprint of the second edn. published by Charles Scribnerʼs Sons, 1909)Google Scholar
- H. Grassman: Die Wissenschaft der extensiven Grösse oder die Ausdehnungslehre (Wigand, Leipzig 1844)Google Scholar
- J.M. McCarthy: Introduction to Theoretical Kinematics (MIT Press, Cambridge 1990)Google Scholar
- W.K. Clifford: Preliminary sketch of bi-quarternions, Proc. London Math. Soc., Vol. 4 (1873) pp. 381–395Google Scholar
- A. P. Kotelnikov: Screw calculus and some applications to geometry and mechanics, Annal. Imp. Univ. Kazan (1895)Google Scholar
- E. Study: Geometrie der Dynamen (Teubner, Leipzig 1901)Google Scholar
- G.S. Chirikjian, A.B. Kyatkin: Engineering Applications of Noncommutative Harmonic Analysis (CRC, Boca Raton 2001)zbMATHGoogle Scholar
- R. von Mises: Anwendungen der Motorrechnung, Z. Angew. Math. Mech. 4(3), 193–213 (1924)CrossRefGoogle Scholar
- J.E. Baker, I.A. Parkin: Fundamentals of Screw Motion: Seminal Papers by Michel Chasles and Olinde Rodrigues (School of Information Technologies, The University of Sydney, Sydney 2003), translated from O. Rodrigues: Des lois géométriques qui régissent les déplacements dʼun système dans lʼespace, J. Math. Pures Applicqu. Liouville 5, 380–440 (1840)Google Scholar
- R.S. Ball: A Treatise on the Theory of Screws (Cambridge Univ Press, Cambridge 1998)zbMATHGoogle Scholar
- J.K. Davidson, K.H. Hunt: Robots and Screw Theory: Applications of Kinematics and Statics to Robotics (Oxford Univ Press, Oxford 2004)zbMATHGoogle Scholar
- K.H. Hunt: Kinematic Geometry of Mechanisms (Clarendon, Oxford 1978)zbMATHGoogle Scholar
- J.R. Phillips: Freedom in Machinery: Volume 1. Introducing Screw Theory (Cambridge Univ Press, Cambridge 1984)Google Scholar
- J.R. Phillips: Freedom in Machinery: Volume 2. Screw Theory Exemplified (Cambridge Univ Press, Cambridge 1990)Google Scholar
- G.S. Chirikjian: Rigid-body kinematics. In: Robotics and Automation Handbook, ed. by T. Kurfess (CRC, Boca Raton 2005), Chapt. 2Google Scholar
- R.M. Murray, Z. Li, S.S. Sastry: A Mathematical Introduction to Robotic Manipulation (CRC, Boca Raton 1994)zbMATHGoogle Scholar
- A. Karger, J. Novak: Space Kinematics and Lie Groups (Routledge, New York 1985)Google Scholar
- R. von Mises: Motorrechnung, ein neues Hilfsmittel in der Mechanik, Z. Angew. Math. Mech. 2(2), 155–181 (1924), [transl. J. E. Baker, K. Wohlhart, Inst. for Mechanics, T. U. Graz (1996)]CrossRefGoogle Scholar
- J.D. Everett: On a new method in statics and kinematics, Mess. Math. 45, 36–37 (1875)Google Scholar
- R. Featherstone: Rigid Body Dynamics Algorithms (Kluwer Academic, Boston 2007)Google Scholar
- F. Reuleaux: Kinematics of Machinery (Dover, New York 1963), (reprint of Theoretische Kinematik, 1875, in German).Google Scholar
- K.J. Waldron: A method of studying joint geometry, Mechan. Machine Theory 7, 347–353 (1972)CrossRefGoogle Scholar
- T.R. Kane, D.A. Levinson: Dynamics, Theory and Applications (McGraw-Hill, New York 1985)Google Scholar
- J.L. Lagrange: Oeuvres de Lagrange (Gauthier-Villars, Paris 1773)Google Scholar
- J. Denavit, R.S. Hartenberg: A kinematic notation for lower-pair mechanisms based on matrices, J. Appl. Mech. 22, 215–221 (1955)zbMATHMathSciNetGoogle Scholar
- W. Khalil, E. Dombre: Modeling, Identification and Control of Robots (Taylor Francis, New York 2002)Google Scholar
- K.J. Waldron: A study of overconstrained linkage geometry by solution of closure equations, Part I: a method of study, Mech. Machine Theory 8(1), 95–104 (1973)CrossRefGoogle Scholar
- R. Paul: Robot Manipulators: Mathematics, Programming and Control (MIT Press, Cambridge 1982)Google Scholar
- J.J. Craig: Introduction to Robotics: Mechanics and Control (Addison-Wesley, Reading 1986)Google Scholar
- K.J. Waldron, A. Kumar: The Dextrous workspace, ASME Mech. Conf. (Los Angeles 1980), ASME paper No. 80-DETC-108Google Scholar
- R. Vijaykumar, K.J. Waldron, M.J. Tsai: Geometric optimization of manipulator structures for working volume and dexterity, Int. J. Robot. Res. 5(2), 91–103 (1986)CrossRefGoogle Scholar
- J. Duffy: Analysis of Mechanisms and Robot Manipulators (Wiley, New York 1980)Google Scholar
- D. Pieper: The Kinematics of Manipulators Under Computer Control. Ph.D. Thesis (Stanford University, Stanford 1968)Google Scholar
- C.S.G. Lee: Robot arm kinematics, dynamics, and control, Computer 15(12), 62–80 (1982)CrossRefGoogle Scholar
- M.T. Mason: Mechanics of Robotic Manipulation (MIT Press, Cambridge 2001)Google Scholar
- H.Y. Lee, C.G. Liang: A new vector theory for the analysis of spatial mechanisms, Mechan. Machine Theory 23(3), 209–217 (1988)CrossRefGoogle Scholar
- R. Manseur, K.L. Doty: A robot manipulator with 16 real inverse kinematic solutions, Int. J. Robot. Res. 8(5), 75–79 (1989)CrossRefGoogle Scholar
- M. Raghavan, B. Roth: Kinematic analysis of the 6R manipulator of general geometry, 5th Int. Symp. Robot. Res. (1990)Google Scholar
- D. Manocha, J. Canny: Real Time Inverse Kinematics for General 6R Manipulators Tech. rep. (University of California, Berkeley 1992)Google Scholar
- B. Buchberger: Applications of Gröbner bases in non-linear computational geometry. In: Trends in Computer Algebra, Lect. Notes Comput. Sci., Vol. 296, ed. by R. Janen (Springer, Berlin 1989) pp. 52–80Google Scholar
- P. Kovacs: Minimum degree solutions for the inverse kinematics problem by application of the Buchberger algorithm. In: Advances in Robot Kinematics, ed. by S. Stifter, J. Lenarcic (Springer, New York 1991) pp. 326–334Google Scholar
- L.W. Tsai, A.P. Morgan: Solving the kinematics of the most general six- and five-degree-of-freedom manipulators by continuation methods, ASME J. Mechan. Transmission Autom. Design 107, 189–195 (1985)CrossRefGoogle Scholar
- C.W. Wampler, A.P. Morgan, A.J. Sommese: Numerical continuation methods for solving polynomial systems arising in kinematics, ASME J. Mech. Des. 112, 59–68 (1990)CrossRefGoogle Scholar
- R. Manseur, K.L. Doty: Fast inverse kinematics of 5-revolute-axis robot manipulators, Mechan. Machine Theory 27(5), 587–597 (1992)CrossRefGoogle Scholar
- S.C.A. Thomopoulos, R.Y.J. Tam: An iterative solution to the inverse kinematics of robotic manipulators, Mechan. Machine Theory 26(4), 359–373 (1991)CrossRefGoogle Scholar
- J.J. Uicker Jr., J. Denavit, R.S. Hartenberg: An interactive method for the displacement analysis of spatial mechanisms, J. Appl. Mech. 31, 309–314 (1964)zbMATHGoogle Scholar
- J. Zhao, N. Badler: Inverse kinematics positioning using nonlinear programming for highly articulated figures, Trans. Comput. Graph. 13(4), 313–336 (1994)CrossRefGoogle Scholar
- D.E. Whitney: Resolved motion rate control of manipulators and human prostheses, IEEE Trans. Man Mach. Syst. 10, 47–63 (1969)CrossRefGoogle Scholar
- H. Cheng, K. Gupta: A study of robot inverse kinematics based upon the solution of differential equations, J. Robot. Syst. 8(2), 115–175 (1991)CrossRefGoogle Scholar
- L. Sciavicco, B. Siciliano: Modeling and Control of Robot Manipulators (Springer, London 2000)Google Scholar
- R.S. Rao, A. Asaithambi, S.K. Agrawal: Inverse Kinematic Solution of Robot Manipulators Using Interval Analysis, ASME J. Mech. Des. 120(1), 147–150 (1998)CrossRefGoogle Scholar
- C.W. Wampler: Manipulator inverse kinematic solutions based on vector formulations and damped least squares methods, IEEE Trans. Syst. Man Cybern. 16, 93–101 (1986)CrossRefzbMATHGoogle Scholar
- D.E. Orin, W.W. Schrader: Efficient computation of the jacobian for robot manipulators, Int. J. Robot. Res. 3(4), 66–75 (1984)CrossRefGoogle Scholar
- D. E. Whitney: The mathematics of coordinated control of prosthetic arms and manipulators J. Dynamic Sys. Meas. Contr. 122, 303–309 (1972)Google Scholar
- R.P. Paul, B.E. Shimano, G. Mayer: Kinematic control equations for simple manipulators, IEEE Trans. Syst. Man Cybern. SMC-11(6), 339–455 (1981)Google Scholar
- R.P. Paul, C.N. Stephenson: Kinematics of robot wrists, Int. J. Robot. Res. 20(1), 31–38 (1983)CrossRefGoogle Scholar
- R.P. Paul, H. Zhang: Computationally efficient kinematics for manipulators with spherical wrists based on the homogeneous transformation representation, Int. J. Robot. Res. 5(2), 32–44 (1986)CrossRefGoogle Scholar
- H. Asada, J.J.E. Slotine: Robot Analysis and Control (Wiley, New York 1986)Google Scholar
- F.L. Lewis, C.T. Abdallah, D.M. Dawson: Control of Robot Manipulators (Macmillan, New York 1993)Google Scholar
- R.J. Schilling: Fundamentals of Robotics: Analysis and Control (Prentice-Hall, Englewood Cliffs 1990)Google Scholar
- M.W. Spong, M. Vidyasagar: Robot Dynamics and Control (Wiley, New York 1989)Google Scholar
- T. Yoshikawa: Foundations of Robotics (MIT Press, Cambridge 1990)Google Scholar